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Formation of alkoxy-derived yttrium aluminium 
oxides 
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Monoclinic Y4AI209 and hexagonal YAIO 3 crystallize at low temperatures from amorphous 
materials prepared by the hydrolysis of yttrium and aluminium double alkoxides. Hexagonal 
YAIO3 transforms to the cubic phase with a garnet structure as an intermediate product at el- 
evated temperatures. The formation process of YAIO3 is described. Solid solutions of hexa- 
gonal YAI03 crystallize between 50 and 62.5 mol % AI203. Yttrium aluminium garnet 
Y3AIsO12(YAG) is formed by transformation of the solid solution. 

1. I n t r o d u c t i o n  
Three compounds exist in the system Y 2 O a - A l z O 3 :  

Y4A120 9, YA10 3, and Y3A15Oa2 (e.g. [1]). The com- 
pound YaAI209 (monoclinic) was prepared by heat- 
ing a stoichiometric mixture of Yz 03 and A12 Oa for a 
long periods of time above 1500~ or by melting a 
specimen (mixture of YzO3, YA103 and YaA1209) 
obtained after heating for 2 h at 1400 ~ [2-4]. Ytt- 
rium orthoaluminate, YA103, has two modifications: 
orthorhombic (perovskite structure) [5], and hexa- 
gonal [6]. Although many investigations have been 
made of the formation of YA10 3 by solid-state reac- 
tion, there have been conflicting results reported in the 
literature. Keith and Roy [7] reported the formation 
of YA103 (Y3A1Y(A104)a) with a garnet structure 
(3Y203"5A1203  = Y3Alz(AIO4)3 cubic) during the 
heating process. However, since their study, no further 
observation of this phase has been described. The 
formation of the orthorhombic modification is very 
complicated; it was formed as a first product [8, 9], 
one of the first products [3, 4 ] or an intermediate 
product [5, 7, 10]. On the other hand, the hexagonal 
modification was obtained only by coprecipitation; 
the hexagonal-to-orthorhombic transformation oc- 
curred at 950 ~ [6]. 

Crystalline Y3 A15 O12 exists in the cubic form hav- 
ing a garnet structure. High temperatures are required 
to prepare pure Y3 A15 O12 as well as in other yttrium 
aluminates, by solid-state reaction. When the re- 
actants were heated below 1600~ it could not be 
obtained as a single-phase but coexisted with YA103 
and A120 3 [3, 4, 11]. Warshaw and Roy [9] reported 
the formation of Y3 Als O12 only from hydroxides at 
1700~ Viechnicki and Caslavsky [12] showed that 
Nd:Y3AIsO12 was formed from mixed oxides after 
prolonged milling by heating for 3 h at 1650~ 
On the other hand, chemical methods permit the 
preparation of Y3A15012 at lower temperatures. 
Yttrium-aluminium coprecipitates, which yield 
Y3 A15 O12 at 700 ~ have recently been prepared by 

the hydroxide precipitation method [13]. A systematic 
study of the formation of yttrium aluminium oxides 
was performed and is reported here, using amorphous 
materials prepared from alkoxides. 

2. Experimental procedure 
Aluminium isopropoxide AI(OC3Hv)3 was synthes- 
ized by heating aluminium metal ( > 99.9% pure) in 
an excess of analytical grade 2-propanol with mercury 
(II) chloride (10 -4  mol/mol metal) as a catalyst for 5 h 
at 82~ [14]. Anhydrous yttrium chloride (99.9% 
pure) was dissolved in ethanol. As-received sodium 
was cleaned by removing a superficial crust; a known 
weight was dissolved in an excess of 2-propanol. The 
mixed solution was slowly added, with stirring, to the 
sodium isopropoxide solution. Under reflux for 3 h at 
82 ~ a clear solution of yttrium aluminium isopro- 
poxide and a precipitate of sodium chloride were 
obtained. After sodium chloride was removed by fil- 
tration, yttrium aluminium alkoxide was hydrolysed 
by adding a large quantity of aqueous ammonia 
(28 wt %) at room temperature. The temperature was 
slowly increased to 70 ~ while the resulting suspen- 
sion was stirred. The hydrolysis products of the vari- 
ous compositions shown in Table I were separated 
from the suspensions by filtration, washed more than 
ten times in water at 70~ until the presence of 
chloride ions (tested by adding a silver nitrate solu- 
tion) was no longer detectable, and dried at 120~ 
under reduced pressure. The powders obtained are 
termed starting powders A-F. X-ray diffraction 
(XRD) analysis showed that all starting powders were 
amorphous. The particles were in the range 500- 
800 nm as measured by electron microscopy. 

Thermogravimetry (TG) and differential thermal 
analysis (DTA) Were conducted in air at a rate of 
10 ~ min-1; s-alumina was used as the reference for 
the DTA. Heated specimens, cooled at a rate of 
10 ~ min- ~ from DTA runs, were examined by XRD 
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TABLE I Chemical composition of starting powders and crystallization and transformation temperatures 

Starting Composition (mol %) Mole ratio Crystallization 
powder Y203 : A120 3 temperature (~ 

Y203 A1203 

Transformation 
temperature (~ 

A 66.67 33.33 2:1 900-940 b 
B 55 45 900-945 b 

870-900 c 
C 50 50 1:1 870-900 c 
D 42 58 890-935 c 
E 37.5 62.5 3:5 890-950 c 
F 32.5 67.5 890 950 c 

1000-1060 
1000-1060 
970-1050 
950-1050 
950 1050 

aTransformation of hexagonal YA10 3 phase into Y3AlsO12 phase. 
bCrystallization of Y4A12 0 9. 
cCrystallization of hexagonal YAIO3 phase. 
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Figure 1 DTA Curves for starting powders (a) A, (b) C and (c) E. 
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analysis using nickel-filtered CuK~ radiation. Inter- 
planar spacings were measured with the aid of internal 
standard of silicon, and unit-cell values were deter- 
mined by a least-squares refinement. Infrared spectro- 
scopy was performed on a dispersion in potassium 
bromide, using the pressed-disc technique. 

3. Results and discussion 
3.1. Thermal analysis 
Thermogravimetric examination for powders A-E 
showed weight decreases of 30.1%-33.5% at 460~ 
These can be attributed to the release of ammonia, 
absorbed water, hydrated water, and organic residues 
from the parent alcohol [15]. A weight decrease of 
35.2% for powder F occurred to 535 ~ Although it 
was amorphous to X-rays, the specimen heated at 
1200~ showed the presence of 0~-A120 3. Boehmite 
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A10(OH) gel was formed when AI(OC3H7) 3 was hy- 
drolysed under the same conditions, followed by was- 
hing and drying; a weight decrease of the product 
occurred up to 560 ~ It seems reasonable to assume 
that powder F contains a small amount of A10(OH) 
gel. 

Fig. 1 shows the DTA curves for powders A, C and 
E. A sharp exothermic peak resulting from the crystal- 
lization of Y4A1209 for powder A was observed at 
900-940 ~ The starting powders C and E revealed 
two exothermic peaks. As will be described, the first 
exothermic peaks were found to result from the crys- 
tallization of hexagonal YA10 3 (YAIO 3 solid solution) 
and the second exothermic peaks from the hexagonal- 
to-cubic phase transformation for powder C and from 
the hexagonal phase transforming to Y3A15012 for 
powder E. The temperatures of crystallization and 
transformation of each starting powder are listed in 



Table I. With increasing AI20 3 between powders C 
and E, the end temperature of crystallization was 
shifted to higher temperatures; on the other hand, the 
starting temperature of transformation moved to 
lower temperatures. No peaks for any of the starting 
powders were detected in the cooling process. 

TAB L E I I X-ray diffraction data for the cubic form of YAIO 3 and 
Y3AIsO12 

YAIO 3 (cubic) a h k 1 YaA15012 (cubic) b 

d(nm) I / I  o d(nm) I/Io 

0.494 
0.428 

0.324 

0.303 

0.2707 

3.2. Formation of Y4AI209 
The starting powders A-F,  being amorphous, did not 
exhibit significant change in structure up to the tem- 
peratures of the first exothermic peaks. The specimens 0.2471 

0.2374 
from powder A heated to temperatures above the peak 0.2210 

gave an XRD pattern characteristic of Y4A12 0 9. The 0.2140 

X-ray data for the compound obtained by heating for 0.1964 

1 h at 940~ were in good agreement with those 
reported [16]. The diffraction lines were indexed as a 

0.1785 
monoclinic unit cell with a = 1.112 n m ,  b = 1.047 n m ,  0.1748 

c = 0 . 7 3 9 2 n m ,  a n d  13 = 108.60 ~ The compound 
Y4A12 09 was found to form at low temperatures from 
an amorphous material prepared by the alkoxy 
method. 

0.1679 

0.1648 

0.1618 

0.1538 

0.1213 

40 2 1 1 0.4905 27 

10 2 2 0  0.4247 7 

20 3 2 1 0.3210 19 

30 4 0 0 0.3002 27 

100 4 2 0  0.2687 100 

3 3 2 0.2561 < 1 

30 4 2 2 0.2452 20 

10 43  1 0.2355 6 

25 5 2 1 0.2192 23 

5 4 4 0  0.2122 5 

25 5 3 2 0.19474 26 

6 2 0  0.18994 < 1 

541  0.18536 < 1 

5 6 3 1 0.17705 2 

20 4 4 4  0.17330 17 
5 4 3  0.16988 < 1 

35 6 4 0  0.16652 31 

10 7 2 1 0.16338 9 

30 6 4 2  0.16046 28 

5 65  1 0.15247 4 

20 8 0 0  0.12006 10 

3.3. Formation and transformation of YAI03 
Hexagonal YA10 3 from starting powder C crystal- 
lized at 870-900 ~ only the hexagonal modification 
was observed up to 1000 ~ It was transformed to the 
cubic form between 1000 and 1060 ~ The specimen 
heated at 1060~ showed the XRD pattern of the 
cubic form having a garnet structure whose ideal 
formula is Ya A15 O 12 (Y3 AI2 (A104)a). The X-ray data 
for the cubic form with a = 1.211 nm are presented in 
Table II and compared with those of Y3A15012 [17]. 
Keith and Roy [7] reported that an equimolar mix- 
ture of Y 2 0 3  and A120 3 gave a phase with the same 
structure at 1600 and 1700 ~ and suggested that this 
indicates a solid solution of the type YaA1Y(AIO4)3 
= YA103. The present results also suggest that the 
garnet structure is tolerant not only to Al 3 + in both 
six-fold and four-fold coordination [18] but also to 
replacement of half of the six-coordinated aluminium 
by yttrium, as represented by the formula 
YaA1Y(A104)3 . According to the data of Keith and 
Roy [7], the cubic form transforms into the ortho- 
rhombic modification after heating for 2 h at 1800 ~ 
However, although in the present study no thermal 
activity was detected in the DTA curve, the XRD lines 
of Y4 Alz 09 began to appear in the specimen heated at 
1080 ~ and the intensity of the lines increased with 
increasing temperature up to 1200 ~ this result indic- 
ates that the cubic form decomposed into Y4A1209 
and YaAlsO12. After completion of the decomposi- 
tion, the orthorhombic modification was formed by 
solid-state .reaction between both compounds. Single- 
phase orthorhombic YAIO 3 was obtained by heating 
for 1 h at 1650 ~ From the above results, the forma- 
tion process of alkoxy-derived YAIOa can be sum- 
marized as shown in Table III. When powder B was 
heated at 1060~ a mixture of Y4A1209 and cubic 
Y3A15 O12 phase was formed. 

Table IV compares the infrared spectral data of the 
cubic form of YA10 3 and Y3Al~OI2 [19]; these rep- 

aa = 1.21l nm. 
ba = 1.200 89 nm. 

T A B L E  III Reaction process for alkoxy-derived YAIO 3 

crystallization transformation 
Amorphous material-- ~x H e x a g o n a l  - 

870-900  ~ 1000-1060 ~ 

decomposition 
Cubic (ss) )- YaAIsOa2  + Y4AI209 

1080-1200  ~ 

solid-state 
reaction 

1 2 0 0 - 1 6 5 0 ~  

Orthorhombic 

T A B L E  I V  Infrared spectral data for the cubic form of YAIO 3 
and Y3AIsO12 

Band Wave number (cm- 1 ) 

YA103 (cubic) Y3A150~2 (cubic) 

v (A104) 786 s 790 s 
718 s 730 s 

689 m 697 s 

v (AIO6) 562 m 567 s 
510 m 514 s 

455 s 478 s 
427 m 434 m 

(AIO4) 389 m 397 m 
or 368 m 380 m 

v ( Y - O )  350 m 335 m 

Note: s = strong and m = medium;  v = stretching vibration and 
= bending vibration. 

resent the same spectral pattern, although the absorp- 
tion bands in the cubic form are located at lower 
frequencies than those of Y3A15OI2 . On the basis of 
the data of Y3A15012 [19], the bands at 790, 730 and 
697 cm- 1 are due to the stretching vibrations of A10 4 
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tetrahedra, the bands near 500cm -1 to stretching 
vibrations of A10 6 octahedra, and the bands in the 
300-400 cm -~ range to either bending vibrations 
of A10 4 tetrahedra or Y-O streching vibrations. 
Accordingly, the absorption bands of the cubic form 
were assigned, as shown in Table IV, by reference to 
the data of Y3AlsO12 . 

3.4. Formation of hexagonal YAI03 solid 
solution 

Single-phase hexagonal YA10 3 from powders C-E 
was formed at temperatures after each first exothermic 
peak, although the intensity of the XRD lines de- 
creased with increasing A1E O3; this phase was present 
up to the temperatures of the second exothermic 
peaks. Although no transitional phases of A I 2 0  3 w e r e  

recognized in the heating process, as noted above, a 
small amount of r 3 contained in the specimen 
when powder F was heated at 1200 ~ It is clear that 
hexagonal YA10 a solid solutions were formed 
between 50 and 62.5mo1% A120 a. The lattice 
parameters of pure hexagonal YA10 3 obtained from 
powder C were a = 0.3678nm and c = 1.054nm; 
the values agreed with those (a = 0.3678nm, 
c = 1.052 nm) reported by Bertaut and Mareschal [6]. 
Compositional changes result in a significant varia- 
tion in the cell dimensions. Fig. 2 shows the variation 
of lattice parameters of the hexagonal YA10 3 phases; 
the lattice parameter a was relatively constant 
(0.3678 nm) regardless of composition, whereas c de- 
creased from 1.054 nm to 1.046 nm with increasing 
AlE O3. 

3.5. Formation of Y3AIsO12 
Single crystals having a garnet structure have been 
drawing considerable attention since the early 1960s, 
as they are important crystals in the laser, microwave, 
and ultrasonic device fields. On the other hand, until 
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70 

Figure 2 Lattice parameter for hexagonal YA103 phases as a func- 
tion of composition. 
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recently little attention has been paid to the fabric- 
ation of the ceramics [20-22], because high temper- 
atures are required to prepare pure Y3A15012. The 
transformation of the hexagonal YA10 3 solid solu- 
tions occurred at the temperatures of the second ex- 
othermic peaks. The XRD analysis confirmed that 
single-phase Y3A15OI2 from powder E was formed at 
1050 ~ The lattice parameter of the compound after 
heating for l h at 1650~ was estimated to be 
a = 1.202 nm, agreeing with the value (1.200 89 nm) 
reported [17]. Thus YaA15012 could be easily pre- 
pared by transformation of the hexagonal YAIO 3 
solid solution formed from alkoxides in the mole ratio 
Y3+:A13+ = 3:5. 

The hexagonal YA103 solid solution formed from 
powder D was transformed into the Y3AIsO12 phase 
at 970-1050~ The lattice parameter of the phase 
was a = 1.206 nm. The values of lattice parameters for 
the Y3A15012 phases decreased with increasing 
A120 3. The specimen when heated at 1200~ was a 
mixture of Y4A1209 and Y3AIsO12. 
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