Formation of alkoxy-derived yttrium aluminium oxides

O. YAMAGUCHI, K. TAKEOKA, K. HIROTA, H. TAKANO*, A. HAYASHIDA* Department of Applied Chemistry, and *Department of Chemical Engineering, Faculty of Engineering, Doshisha University, Kyoto 602, Japan

Monoclinic $Y_4AI_2O_9$ and hexagonal YAIO₃ crystallize at low temperatures from amorphous materials prepared by the hydrolysis of yttrium and aluminium double alkoxides. Hexagonal YAIO₃ transforms to the cubic phase with a garnet structure as an intermediate product at elevated temperatures. The formation process of YAIO₃ is described. Solid solutions of hexagonal YAIO₃ crystallize between 50 and 62.5 mol % AI₂O₃. Yttrium aluminium garnet Y₃AI₅O₁₂(YAG) is formed by transformation of the solid solution.

1. Introduction

Three compounds exist in the system Y_2O_3 -Al₂O₃: $Y_4Al_2O_9$, $YAlO_3$, and $Y_3Al_5O_{12}$ (e.g. [1]). The compound Y₄Al₂O₉ (monoclinic) was prepared by heating a stoichiometric mixture of Y_2O_3 and Al_2O_3 for a long periods of time above 1500 °C or by melting a specimen (mixture of Y_2O_3 , YAlO₃ and $Y_4Al_2O_9$) obtained after heating for 2 h at 1400 °C [2-4]. Yttrium orthoaluminate, YAlO₃, has two modifications: orthorhombic (perovskite structure) [5], and hexagonal [6]. Although many investigations have been made of the formation of YAIO₃ by solid-state reaction, there have been conflicting results reported in the literature. Keith and Roy [7] reported the formation of $YAIO_3$ ($Y_3AIY(AIO_4)_3$) with a garnet structure $(3Y_2O_3 \cdot 5Al_2O_3 = Y_3Al_2(AlO_4)_3$ cubic) during the heating process. However, since their study, no further observation of this phase has been described. The formation of the orthorhombic modification is very complicated; it was formed as a first product [8, 9], one of the first products [3, 4] or an intermediate product [5, 7, 10]. On the other hand, the hexagonal modification was obtained only by coprecipitation; the hexagonal-to-orthorhombic transformation occurred at 950 °C [6].

Crystalline $Y_3Al_5O_{12}$ exists in the cubic form having a garnet structure. High temperatures are required to prepare pure $Y_3Al_5O_{12}$ as well as in other yttrium aluminates, by solid-state reaction. When the reactants were heated below 1600 °C, it could not be obtained as a single-phase but coexisted with YAlO₃ and Al₂O₃ [3, 4, 11]. Warshaw and Roy [9] reported the formation of $Y_3Al_5O_{12}$ only from hydroxides at 1700 °C. Viechnicki and Caslavsky [12] showed that $Nd: Y_3Al_5O_{12}$ was formed from mixed oxides after prolonged milling by heating for 3 h at 1650 °C. On the other hand, chemical methods permit the preparation of $Y_3Al_5O_{12}$ at lower temperatures. Yttrium-aluminium coprecipitates, which yield $Y_3Al_5O_{12}$ at 700 °C, have recently been prepared by the hydroxide precipitation method [13]. A systematic study of the formation of yttrium aluminium oxides was performed and is reported here, using amorphous materials prepared from alkoxides.

2. Experimental procedure

Aluminium isopropoxide $Al(OC_3H_7)_3$ was synthesized by heating aluminium metal (> 99.9% pure) in an excess of analytical grade 2-propanol with mercury (II) chloride $(10^{-4} \text{ mol/mol metal})$ as a catalyst for 5 h at 82 °C [14]. Anhydrous yttrium chloride (99.9% pure) was dissolved in ethanol. As-received sodium was cleaned by removing a superficial crust; a known weight was dissolved in an excess of 2-propanol. The mixed solution was slowly added, with stirring, to the sodium isopropoxide solution. Under reflux for 3 h at 82 °C, a clear solution of yttrium aluminium isopropoxide and a precipitate of sodium chloride were obtained. After sodium chloride was removed by filtration, yttrium aluminium alkoxide was hydrolysed by adding a large quantity of aqueous ammonia (28 wt %) at room temperature. The temperature was slowly increased to 70 °C while the resulting suspension was stirred. The hydrolysis products of the various compositions shown in Table I were separated from the suspensions by filtration, washed more than ten times in water at 70 °C until the presence of chloride ions (tested by adding a silver nitrate solution) was no longer detectable, and dried at 120 °C under reduced pressure. The powders obtained are termed starting powders A-F. X-ray diffraction (XRD) analysis showed that all starting powders were amorphous. The particles were in the range 500-800 nm as measured by electron microscopy.

Thermogravimetry (TG) and differential thermal analysis (DTA) were conducted in air at a rate of $10 \,^{\circ}\text{C} \,^{\text{min}^{-1}}$; α -alumina was used as the reference for the DTA. Heated specimens, cooled at a rate of $10 \,^{\circ}\text{C} \,^{\text{min}^{-1}}$ from DTA runs, were examined by XRD

TABLE I Chemical composition of starting powders and crystallization and transformation temperatures

Starting powder	Composition (mol %)		Mole ratio $Y_2 Q_2 : Al_2 Q_2$	Crystallization temperature (°C)	Transformation temperature (°C) ^a
	$\overline{Y_2O_3}$	Al ₂ O ₃			
A	66.67	33.33	2:1	900-940 ^b	
В	55	45		900-945 ^b	
				870-900°	1000-1060
С	50	50	1:1	870-900°	1000-1060
D	42	58		890-935°	970-1050
E	37.5	62.5	3:5	890-950°	950-1050
F	32.5	67.5		890-950°	950-1050

^aTransformation of hexagonal YAlO₃ phase into Y₃Al₅O₁₂ phase.

^bCrystallization of Y₄Al₂O₉.

°Crystallization of hexagonal YAIO₃ phase.

Figure 1 DTA curves for starting powders (a) A, (b) C and (c) E.

analysis using nickel-filtered CuK_{α} radiation. Interplanar spacings were measured with the aid of internal standard of silicon, and unit-cell values were determined by a least-squares refinement. Infrared spectroscopy was performed on a dispersion in potassium bromide, using the pressed-disc technique.

3. Results and discussion

3.1. Thermal analysis

Thermogravimetric examination for powders A–E showed weight decreases of 30.1%-33.5% at 460 °C. These can be attributed to the release of ammonia, absorbed water, hydrated water, and organic residues from the parent alcohol [15]. A weight decrease of 35.2% for powder F occurred to 535 °C. Although it was amorphous to X-rays, the specimen heated at 1200 °C showed the presence of α -Al₂O₃. Boehmite

1262

AlO(OH) gel was formed when Al(OC₃H₇)₃ was hydrolysed under the same conditions, followed by washing and drying; a weight decrease of the product occurred up to 560 °C. It seems reasonable to assume that powder F contains a small amount of AlO(OH) gel.

Fig. 1 shows the DTA curves for powders A, C and E. A sharp exothermic peak resulting from the crystallization of $Y_4Al_2O_9$ for powder A was observed at 900–940 °C. The starting powders C and E revealed two exothermic peaks. As will be described, the first exothermic peaks were found to result from the crystallization of hexagonal YAlO₃ (YAlO₃ solid solution) and the second exothermic peaks from the hexagonalto-cubic phase transformation for powder C and from the hexagonal phase transforming to $Y_3Al_5O_{12}$ for powder E. The temperatures of crystallization and transformation of each starting powder are listed in Table I. With increasing Al_2O_3 between powders C and E, the end temperature of crystallization was shifted to higher temperatures; on the other hand, the starting temperature of transformation moved to lower temperatures. No peaks for any of the starting powders were detected in the cooling process.

3.2. Formation of $Y_4AI_2O_9$

The starting powders A–F, being amorphous, did not exhibit significant change in structure up to the temperatures of the first exothermic peaks. The specimens from powder A heated to temperatures above the peak gave an XRD pattern characteristic of $Y_4 Al_2 O_9$. The X-ray data for the compound obtained by heating for 1 h at 940 °C were in good agreement with those reported [16]. The diffraction lines were indexed as a monoclinic unit cell with a = 1.112 nm, b = 1.047 nm, c = 0.7392 nm, and $\beta = 108.60^\circ$. The compound $Y_4 Al_2 O_9$ was found to form at low temperatures from an amorphous material prepared by the alkoxy method.

3.3. Formation and transformation of YAIO₃

Hexagonal YAlO₃ from starting powder C crystallized at 870-900 °C; only the hexagonal modification was observed up to 1000 °C. It was transformed to the cubic form between 1000 and 1060 °C. The specimen heated at 1060 °C showed the XRD pattern of the cubic form having a garnet structure whose ideal formula is $Y_3Al_5O_{12}$ ($Y_3Al_2(AlO_4)_3$). The X-ray data for the cubic form with a = 1.211 nm are presented in Table II and compared with those of $Y_3Al_5O_{12}$ [17]. Keith and Roy [7] reported that an equimolar mixture of Y_2O_3 and Al_2O_3 gave a phase with the same structure at 1600 and 1700 °C and suggested that this indicates a solid solution of the type $Y_3AlY(AlO_4)_3$ = $YAIO_3$. The present results also suggest that the garnet structure is tolerant not only to Al^{3+} in both six-fold and four-fold coordination [18] but also to replacement of half of the six-coordinated aluminium by yttrium, as represented by the formula $Y_3AlY(AlO_4)_3$. According to the data of Keith and Roy [7], the cubic form transforms into the orthorhombic modification after heating for 2 h at 1800 °C. However, although in the present study no thermal activity was detected in the DTA curve, the XRD lines of $Y_4 Al_2 O_9$ began to appear in the specimen heated at 1080 °C, and the intensity of the lines increased with increasing temperature up to 1200 °C; this result indicates that the cubic form decomposed into Y₄Al₂O₉ and Y₃Al₅O₁₂. After completion of the decomposition, the orthorhombic modification was formed by solid-state reaction between both compounds. Singlephase orthorhombic YAIO₃ was obtained by heating for 1 h at 1650 °C. From the above results, the formation process of alkoxy-derived YAlO₃ can be summarized as shown in Table III. When powder B was heated at 1060 °C, a mixture of Y₄Al₂O₉ and cubic $Y_3Al_5O_{12}$ phase was formed.

Table IV compares the infrared spectral data of the cubic form of YAlO₃ and $Y_3Al_5O_{12}$ [19]; these rep-

TABLE II X-ray diffraction data for the cubic form of $YAIO_3$ and $Y_3AI_5O_{12}$

YAlO ₃ (cubic) ^a		h k l	$Y_{3}Al_{5}O_{12}$ (0	$Y_3Al_5O_{12}$ (cubic) ^b	
d(nm)	I/I ₀		d(nm)	I/I ₀	
0.494	40	211	0.4905	27	
0.428	10	220	0.4247	7	
0.324	20	321	0.3210	19	
0.303	30	400	0.3002	27	
0.2707	100	420	0.2687	100	
		332	0.2561	< 1	
0.2471	30	422	0.2452	20	
0.2374	10	431	0.2355	6	
0.2210	25	521	0.2192	23	
0.2140	5	440	0.2122	5	
0.1964	25	532	0.19474	26	
		620	0.18994	< 1	
		541	0.18536	< 1	
0.1785	5	631	0.17705	2	
0.1748	20	444	0.17330	17	
		543	0.16988	< 1	
0.1679	35	640	0.16652	31	
0.1648	10	721	0.16338	9	
0.1618	30	642	0.16046	28	
0.1538	5	651	0.15247	4	
0.1213	20	800	0.12006	10	

aa = 1.211 nm.

ba = 1.200 89 nm.

TABLE III Reaction process for alkoxy-derived YAIO₃

Amorphous material $\frac{\text{crystallization}}{870-900^{\circ}\text{C}}$	Hexagonal	transformation
Cubic (ss) $\frac{\text{decomposition}}{1080-1200 ^{\circ}C} Y_3 \text{Al}_5 \text{O}_{12}$	$+ Y_4 Al_2 O_9$	solid-state reaction 1200-1650 °C

Orthorhombic

TABLE IV Infrared spectral data for the cubic form of $YAlO_3$ and $Y_3Al_5O_{12}$

Band	Wave number (cm	-1)
	YAlO ₃ (cubic)	$Y_3Al_5O_{12}$ (cubic)
$\overline{v(AlO_4)}$	786 s	790 s
,	718 s	730 s
	689 m	697 s
v (AlO ₆)	562 m	567 s
	510 m	514 s
	455 s	478 s
	427 m	434 m
δ (AlO ₄)	389 m	397 m
or	368 m	380 m
v (Y+O)	350 m	335 m

Note: s = strong and m = medium; v = stretching vibration and $\delta = bending$ vibration.

resent the same spectral pattern, although the absorption bands in the cubic form are located at lower frequencies than those of $Y_3Al_5O_{12}$. On the basis of the data of $Y_3Al_5O_{12}$ [19], the bands at 790, 730 and 697 cm⁻¹ are due to the stretching vibrations of AlO₄

tetrahedra, the bands near 500 cm^{-1} to stretching vibrations of AlO₆ octahedra, and the bands in the $300-400 \text{ cm}^{-1}$ range to either bending vibrations of AlO₄ tetrahedra or Y-O stretching vibrations. Accordingly, the absorption bands of the cubic form were assigned, as shown in Table IV, by reference to the data of Y₃Al₅O₁₂.

3.4. Formation of hexagonal YAIO₃ solid solution

Single-phase hexagonal YAIO₃ from powders C-E was formed at temperatures after each first exothermic peak, although the intensity of the XRD lines decreased with increasing Al_2O_3 ; this phase was present up to the temperatures of the second exothermic peaks. Although no transitional phases of Al₂O₃ were recognized in the heating process, as noted above, a small amount of α -Al₂O₃ contained in the specimen when powder F was heated at 1200 °C. It is clear that hexagonal YAIO₃ solid solutions were formed between 50 and 62.5 mol % Al_2O_3 . The lattice parameters of pure hexagonal YAlO₃ obtained from powder C were a = 0.3678 nm and c = 1.054 nm; the values agreed with those (a = 0.3678 nm,c = 1.052 nm) reported by Bertaut and Mareschal [6]. Compositional changes result in a significant variation in the cell dimensions. Fig. 2 shows the variation of lattice parameters of the hexagonal YAlO₃ phases; the lattice parameter a was relatively constant (0.3678 nm) regardless of composition, whereas c decreased from 1.054 nm to 1.046 nm with increasing Al_2O_3 .

3.5. Formation of $Y_3AI_5O_{12}$

Single crystals having a garnet structure have been drawing considerable attention since the early 1960s, as they are important crystals in the laser, microwave, and ultrasonic device fields. On the other hand, until

Figure 2 Lattice parameter for hexagonal YAIO₃ phases as a function of composition.

recently little attention has been paid to the fabrication of the ceramics [20–22], because high temperatures are required to prepare pure $Y_3Al_5O_{12}$. The transformation of the hexagonal YAIO₃ solid solutions occurred at the temperatures of the second exothermic peaks. The XRD analysis confirmed that single-phase $Y_3Al_5O_{12}$ from powder E was formed at 1050 °C. The lattice parameter of the compound after heating for 1 h at 1650 °C was estimated to be a = 1.202 nm, agreeing with the value (1.20089 nm) reported [17]. Thus $Y_3Al_5O_{12}$ could be easily prepared by transformation of the hexagonal YAIO₃ solid solution formed from alkoxides in the mole ratio $Y^{3+}:Al^{3+} = 3:5$.

The hexagonal YAlO₃ solid solution formed from powder D was transformed into the Y₃Al₅O₁₂ phase at 970-1050 °C. The lattice parameter of the phase was a = 1.206 nm. The values of lattice parameters for the Y₃Al₅O₁₂ phases decreased with increasing Al₂O₃. The specimen when heated at 1200 °C was a mixture of Y₄Al₂O₉ and Y₃Al₅O₁₂.

References

- 1. B. COCKAYNE, J. Less-Common Metals 114 (1985) 199.
- 2. J. W. REED and A. B. CHASE, Acta Crystallogr. 15 (1962) 812.
- 3. S. NAKA, O. TAKENAKA, T. SEKIYA and T. NODA, Kogyo Kagaku Zasshi 69 (1966) 1112.
- 4. T. NOGUCHI and M. MIZUNO, Kogyo Kagaku Zassi 70 (1967) 834.
- 5. S. J. SCHNEIDER, R. S. ROTH and J. L. WARING, J. Res. Nat. Bur. Stand. 65A (1961) 345.
- 6. E. F. BERTAUT and J. MARESCHAL, Compt. Rend. 257 (1963) 867.
- 7. M. L. KEITH and R. ROY, Amer. Mineral. 39 (1959) 1.
- 8. R. S. ROTH, J. Res. Nat. Bur. Stand. 58 (1957) 75.
- 9. I. WARSHAW and R. ROY, J. Amer. Ceram. Soc. 42 (1959) 434.
- V. B. GLUSHKOVA, V. A. KRZHIZHANOVSKAYA, O. N. EGOROVA, YU. P. UDALOV and L. P. KACHALOVA, *Izv. Akad. Nauk. SSSR Neorg. Mater.* 19 (1983) 95.
- 11. D. R. MESSIER and G. E. GAZZA, Amer. Ceram. Soc. Bull. 51 (1972) 692.
- 12. D. VIECHNICKI and J. L. CASLAVSKY, ibid. 58 (1979) 790.
- H. HANEDA, in "Metal, Inorganic, and Polymer Materials", Vol. 7 (Japan Foundation for Scientific Technology, Tokyo, 1987) p. 270.
- 14. O. YAMAGUCHI, K. SUGIURA, A. MITSUI and K. SHIMIZU, J. Amer. Ceram. Soc. 68 (1985) C44.
- O. YAMAGUCHI, T. KANAZAWA and K. SHIMIZU, J. Chem. Soc. Dalton Trans. (1982) 1005.
- Powder Diffraction File, Card No. 34-368 (Joint Committee on Powder Diffraction Standards, Swarthmore PA, 1984).
- 17. Powder Diffraction File, Card No. 33-40 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA. 1984).
- 18. S. GELLER, J. Appl. Phys. 31 (1960) 30S.
- 19. P. TARTE, Spectrochim. Acta 23A (1967) 2127.
- 20. G. De WITH and H. J. A. DIJK, Mater. Res. Bull. 19 (1984) 1669.
- 21. C. A. M. MULDER and G. De WITH, Solid State Ionics 16 (1985) 81.
- 22. G. De WITH and J. E. D. PARREN, ibid. 16 (1985) 87.

Received 26 November 1990 and accepted 10 April 1991